HOME >> 動力車の調査 > KATO EF510-1    その1  その2

動力車の調査  KATO EF510-1  その2 修正版

 

■05 電気回路の電圧降下

  電気回路の電圧降下について、有効な測定方法が見つからないので、車両特性の計算の中で、適切 に推定することにする。

 

 

■06 車両での速度特性の測定

 走行特性を測定するにあたって、電気回路の電圧降下量の推定を少しでも信頼性が向上するように、ライト基板を取り去り、ダミーのプラ板に取り替えて測定を実施した。これによってライト基板への電流分離が無くなり、モータに流れる電流を供給電流と一対一に対応させて特性解析をより詳しく実施しようとするものである。

 最初に、モータのウォームアップを兼ねて、速度と電流の時間変化も測定することにした。 条件は、重り車両を牽引した坂道路走行状態とし、70パーミルの勾配で牽引力が 16.6 グラムの登坂状態で速度と電流を測定した。 電圧は 4.0 Volt に設定している。 小判形の周回路のため、登りがあれば当然下りもあります。

 

 この車両は、速度や電流のバラツキが非常に少なく、かつ、早い段階で安定するようである。 スタートから速度が少し上昇すうが3分も経つと安定するが、モータが安定して回転しているためと思われる。 なお、4分ごろの段差は、ダイヤル設定を少し動かしたために変化したもので、人為的な変化です。

 次に、平坦路単機走行での速度特性を再測定したので下に示す。 今回は牽引力の測定の後で、そのまま測定したので、モータは充分に温まっていると考えている。

 

 電流特性について、電圧が高くなると頭打ちになっているが、モータ単品での電流特性と凸凹が逆になっているのが不思議である。 

 そこで、横軸をモータの回転数に取って、車両状態と単品状態の電流値を比較したのが、右のグラフである。 車両でのモータ回転数は、車速から滑り率ゼロと仮定して逆算したものである。

 このモータ単品での測定データは、既に報告している「モータの回転変動」で記述したデータと同じものである。 この時は横軸を電圧に取っているが、車両搭載状態と合わせるためにモータ回転数に変更している。 そして、 4 volt (モータの回転数では、13,000 rpm )近辺の変形について、そこでモータの共振現象ではないかと疑っていたが、車両状態でも同様の傾向が見られる。 しかし、凸凹が逆になっているのが解せないのである。 なんで・・・・・・・・・・・?

 右のグラフは、共振現象(?)を無視して直線近似させたものを表示させたが、いろいろな疑問点が湧いて来る。 通常なら、ギヤなどの摩擦抵抗が加算されるので、モータの単品状態から上方に平行移動か、あるいは開き気味に展開しそうである。 でも、交差しているのは何故だろうか・・・・・・・?

 あやしげな装置で、あやしげなデータを取り、あやしげな現象に悩んである「ヘンテコリンな」鉄道模型オタク・・・・・・・・!  と自虐的になってしまっている。

 よく解らないので、強引に直線近似させて、モデル化することにする。

 

■07 牽引力特性の測定

 次に、牽引力特性も再測定したので、その結果を下に示す。 今回から、パラメータとしての電圧設定は、設定値が±0.05 volt 以内を保つようにダイヤル調整を実施している。

 

 ライト基板の撤去や、より厳密な電圧設定により、整ったデータが得られる思っていたが、3Voltや4Voltのデータは、疑問符の付くデータとなってしまった。 本来はさらに測定し直すべきであろうが、その意欲がなくなってしまっていた。

 

■08 車両特性の解析

 次に、計算モデルを活用して車両のいろいろな特性を解析してみよう。

1) 単機平坦路走行時の特性

 伝達効率が100%と仮定した場合に車速を実測値と比較したものが、下の左のグラフである。 そして、電流値から推定したモータの出力トルクを伝達系の損失トルクと考え、それをグラフ化したので下の右のグラフである。

 

 伝達系の損失トルクを示す右のグラフより、損失トルクは速度に殆んど影響していない様であるが、このグラフの直線近似式より、速度項λd はλd = -0.0002 、そして R8 は、R8 = 5.57 と推定する。 そして、この損失トルクをもとに、単機走行状態を計算した結果を、実測値と重ねて表示したものを下のグラフに示す。 ほぼ計算はマッチしていると判断出来る。

 

 この車両も速度項がマイナスになってしまったが、同様な傾向を持つ車両があるのでこれはこれで正しいのかも知れない。 まだ良く解らない。

2) 牽引力特性

 次に、牽引力特性についても、効率100%の場合を計算し、伝達系の効率と速度差を下のグラフに示す。 

 

 この効率のグラフについて、駆動側を見るとそれらしき値を示していると判断出来そうである。 そして、この車両では、ギヤ比が i = 26 、ウォームモジュールは m = 0.3 であるが、効率は20%前後で、他の車両と同等な値を示している。 また、速度差のグラフについては、相変わらずバラバラのデータではあるが、やはり3Voltのデータは、疑問符の付くデータとなっている。

 

3) 駆動系損失の分析

 次に駆動系の損失トルクを推定する。 損失トルク T1 をウォーム軸の回転数、即ちモータ回転数を横軸にしてグラフ化したのが、下の左のグラフである。 そして、このT1 から速度項を差引いた T2 の値を動輪トルクを横軸にグラフ化したのが、下の右のグラフである。 

 

 次に、T2 のデータより、左右の勾配を求めるため、グラフ表示をすこし細工する。 その結果を下の左のグラフに示す。 直線近似の勾配値を平均して、駆動時の抗力項の係数R7 は、R7 = 0.089 、制動時の抗力項の係数R7 は、R7 = -0.088 と推定出来る。 そして、このT2 より、今求めた抗力係数によって計算された抗力項を差しい引いた損失トルクを下の右のグラフに示す。

 

4) 損失トルクの内訳

 上記の駆動系損失の分析で求めた各損失項を分かり良く表示するために、各電圧パラメータ毎にグラフ化する。 グラフの見方は「車両の静的特性のモデル化と特性解析」を参照下さい。

 

  .

 

5) 電圧降下量の推定

 次に、集電回路の電圧降下を推定してみよう。 車速や供給電流値から計算した電圧降下のグラフを右のグラフに示す。 今回の測定に際してはライト基板を取り去って測定しているため、電流値の値は供給電流の測定値そのままとなるため、データの信頼性はアップしたと考えている。

 スリップ領域を除いて考えると右上がりの傾向を示しており、これらの見ながらエイヤーと引いた赤線を電圧降下の特性線図として見た。 その結果、R5 = 0.006、 R6 = 0.0 と推定した。  そして、今まで試行錯誤してきたいろいろな方法のデータと似かよっており信用できそうであるが、ここでも、3Voltのデータは疑問符の付くデータとなっている。

 

6) 牽引力特性の計算結果

  ここでは、推定した定数を使用し、モデル化したモータと車両の特性式のよって牽引力特性を計算し、測定データのグラフの上に重ねて表示する。 これにより、計算式と定数の確からしさを検証しようとするものである。

 

■09 まとめ

 この車両の動力特性に関する諸元をまとめて一覧表に表示する。

EF510形 交流直流電気機関車 メーカー/品番 KATO/3051-1 車両番号 EF510-1 製造年 2006年
車体諸元 車両重量 95.5 前台車荷重 40 後台車荷重 40
台車中心間距離 82.5 台車軸距離 17.5    
モータ諸元 定数 モータ構造 2P5S、θ=0 フライホイール諸元 φ10.4*7.5-2 マーキング 青/白
逆起電力定数 Ke 0.0002688 巻線抵抗 Ra 7.335 ブラシ部電圧降下 Eb 0.0
トルク定数 Kt 230 摩擦トルク Rm 11.0 摩擦損失速度係数 λm 0.0005865
伝達機構 ウォームモジュール m 0.3 ホイール歯数 Z 26 動輪軸歯数 Z 17
ギヤ比 i 26.0 動輪直径 D φ7.4 車輪形状 ローフランジ
各種定数 電圧降下係数 R5 0.003 電圧降下係数 R6 0.0 ライト基盤係数 R3 1.82 ライト基盤係数 R4 5.06
速度係数λd -0.0002 抗力係数駆動 R7 0.089 抗力係数制動 R7 -0.088 固定項係数 R8 5.57
基本単位 長さ mm、 重さ gf(グラム )、 回転数 rpm、 電圧 volt、 電流 A、 抵抗 Ω、 スケール速度 Km/h、 ただしグラフの電流値は mA で表示。

 (注記) これらのデータは、ホビーとして個人が手持ちの車両を測定したものであり、その信頼性は保証いたしません。

 

 牽引特性などの実測値と計算値とは、かなりピッタリと合って来ており、計算モデルと推定した定数は信用出来ると考える事ができる。 そして、他の車両の定数と比較することによって、この車両の特徴を示すことが出来るものと考えている。